4.6 Article

Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Latest progress on fully non-fused electron acceptors for high-performance organic solar cells

Jianhong Gao et al.

Summary: Remarkable advances have been made in organic solar cells with the power conversion efficiency (PCE) exceeding 19% using non-fullerene acceptors (NFAs). However, the major achievement comes from fused ring electron acceptors (FREAs) with complex structures, leading to high cost. Therefore, designing fully non-fused ring electron acceptors (NFREAs) with only single-aromatic ring in the electron-donating core can achieve a fine balance between efficiency and cost, accelerating the commercial application of organic solar cells.

CHINESE CHEMICAL LETTERS (2023)

Article Chemistry, Multidisciplinary

Compromising Charge Generation and Recombination with Asymmetric Molecule for High-Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency

Chengliang He et al.

Summary: Balancing charge generation and recombination is a major challenge in breaking the limitations of organic photovoltaics. Researchers have developed an asymmetric non-fullerene acceptor called AC9, demonstrating a high-performance OPV with a champion efficiency of 18.43%. Comprehensive analysis shows that the improved device performance of AC9-based OPVs is due to a better compromise between charge generation and non-radiative charge recombination compared to symmetric acceptors.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Nanoscience & Nanotechnology

Dilution effect for highly efficient multiple-component organic solar cells

Lijian Zuo et al.

Summary: Research shows that the "dilution effect" mechanism in multi-component organic solar cells can enhance luminescence quantum efficiency and open-circuit voltage, achieving high energy conversion efficiency.

NATURE NANOTECHNOLOGY (2022)

Review Chemistry, Multidisciplinary

Recent progress in organic solar cells (Part I material science)

Yahui Liu et al.

Summary: In recent years, organic solar cells (OSCs) have made significant progress with power conversion efficiencies (PCEs) over 18%, showing promising practical applications. Key research focuses in the OSC field include development in material science and interface materials. The article systematically summarizes the recent progress in these areas and discusses current challenges and future developments.

SCIENCE CHINA-CHEMISTRY (2022)

Article Multidisciplinary Sciences

Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%

Chengliang He et al.

Summary: Efficient organic solar cells with high luminescence and charge collection are achieved by blending an asymmetric non-fullerene acceptor BO-5Cl with PM6 donor, resulting in a record-high electroluminescence external quantum efficiency of 0.1% and a power conversion efficiency of over 15%. Incorporating BO-5Cl as the third component in a widely-studied PM6:BO-4Cl blend further enhances the certified power conversion efficiency to 18.2%.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Multidisciplinary

Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics

Chengliang He et al.

Summary: This study investigates the advantages of using the sequential casting (SC) method for bulk heterojunction (BHJ)-based organic solar cells (OSCs). It is found that SC processing can achieve better morphology and device performance compared to the widely-used blend casting (BC) method. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to explain the morphology evolution during SC processing. Moreover, the vertical phase segregation is found to improve device performance through affecting charge transport and collection processes.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors

Chenyi Yang et al.

Summary: In this study, a novel non-fused-ring acceptor material A4T-3 was developed by modifying the molecular structure. It was found that A4T-3 exhibited lower intramolecular energetic disorder and higher electron mobility, leading to improved photovoltaic performance in the OSCs.

SCIENCE CHINA-CHEMISTRY (2022)

Article Multidisciplinary Sciences

Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable

Hongyuan Fu et al.

Summary: This study developed a simple and inexpensive boron trifluoride etherate-catalyzed Knoevenagel condensation method for the efficient synthesis of high-performing acceptor-donor-acceptor structured small molecule acceptors. Compared with traditional methods, this approach significantly reduces costs and provides an important synthetic tool for the development of PSCs and other emerging technologies.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Physical

Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics

Lingling Zhan et al.

Summary: By adopting a ternary strategy to regulate the structure of symmetric-asymmetric non-fullerene acceptors, a balance between open-circuit voltage and short-circuit current density can be achieved in organic photovoltaics, leading to higher efficiency.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Noncovalent molecular interactions, charge transport and photovoltaic performance of asymmetric M-series acceptors with dichlorinated end groups

Ruochuan Liao et al.

Summary: Utilization of chlorinated end groups is an efficient strategy for developing small molecule nonfullerene acceptors (NFAs) with narrow bandgaps. In this study, the relationships between molecular structures, pi-pi stacking motifs, and charge transport behaviors of three isomeric NFAs were systematically revealed, providing insights into the structure-property relationships of NFAs with chlorinated end groups.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Multidisciplinary

Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics

Qing Shen et al.

Summary: This article comprehensively summarizes the work on non-fused ring electron acceptors (NFREAs) in terms of molecular design and efficiency optimization, material cost, and stability. By addressing the issues of conformational unicity and effective molecular packing, NFREAs can achieve higher efficiencies. In addition, the simplified synthesis routes of NFREAs greatly reduce the complexity and cost of production. Strategies for improving intrinsic material stability, photostability, and thermal stability are also discussed. NFREAs have the potential to drive the development of organic solar cells (OSCs) towards high performance, stability, and low cost.

ACCOUNTS OF MATERIALS RESEARCH (2022)

Article Chemistry, Multidisciplinary

Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics

Chengliang He et al.

Summary: Manipulating the donor:acceptor energetics is crucial for achieving balanced charge separation and recombination in organic solar cells (OSCs). In this study, a non-fullerene electron acceptor, BTP-H2, was designed and synthesized to pair with the polymer donor PM6, showing strong intermolecular interaction and near-zero highest occupied molecular orbital (HOMO) offset. The results demonstrated efficient charge separation and optimized energy conversion, leading to high-performance OSCs with a power conversion efficiency (PCE) of 18.5% and a peak photon-to-electron response of approximately 90%.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Physical

High-Performance Semi-Transparent Organic Photovoltaic Devices via Improving Absorbing Selectivity

Yaokai Li et al.

Summary: This study demonstrates the importance of manipulating the optical properties of materials to improve the light-absorbing selectivity of semi-transparent organic photovoltaics (ST-OPVs), resulting in high-efficiency ST-OPVs with improved light utilization efficiency and good color rendering index.

ADVANCED ENERGY MATERIALS (2021)

Article Multidisciplinary Sciences

Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells

Jing Wang et al.

Summary: This study demonstrates that high voltage losses in organic solar cells can be suppressed by controlling the spacing between the donor and acceptor materials, leading to improved power conversion efficiency. Increasing the DA spacing reduces non-radiative decay of charge carriers and enhances device voltage, pointing to a new research direction for breaking the performance bottleneck of organic solar cells.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

High-Efficiency Organic Solar Cells Based on a Low-Cost Fully Non-Fused Electron Acceptor

Yuanyuan Zhou et al.

Summary: A series of tetrathiophene-based fully non-fused ring acceptors have been developed for efficient organic solar cells, with the ability to tune solubility and packing through lateral chain size adjustments. Incorporating 2-ethylhexyl chains enhances compatibility with donor polymers and achieves high power conversion efficiencies.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cell with 19% Efficiency

Yong Cui et al.

Summary: By combining material design and ternary blending strategy, a maximum power conversion efficiency of 19.0% is achieved in single-junction OPV cells. Optimized active layer structure significantly improves the photovoltaic parameters, enhancing the performance and PCE values of the cells.

ADVANCED MATERIALS (2021)

Article Multidisciplinary Sciences

Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell

Lijiao Ma et al.

Summary: Non-fullerene acceptors based on non-fused conjugated structures have potential for low-cost organic photovoltaic cells, but their efficiencies are lower than those of fused-ring NFAs. A new bithiophene-based non-fused core, TT-Pi, was designed, leading to the development of a completely non-fused NFA, A4T-16, which achieved a high PCE of 15.2% with 84% retention after 1300 hours under simulated AM 1.5 G illumination. This work provides insight into molecule design of non-fused NFAs through molecular geometry control.

NATURE COMMUNICATIONS (2021)

Article Multidisciplinary Sciences

Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics

Shuixing Li et al.

Summary: The study conducted on four non-fullerene acceptors reveals how extended conjugation, asymmetric terminals, and alkyl chain length can affect device performance. Understanding correlations between molecular structures and macroscopic properties is critical in realizing highly efficient organic photovoltaics.

NATURE COMMUNICATIONS (2021)

Review Energy & Fuels

Non-fused ring acceptors for organic solar cells

Mingqun Yang et al.

Summary: Organic solar cells (OSCs) have seen rapid advancements in power conversion efficiencies with the emergence of non-fused ring acceptors (NFRAs) as potential replacements for the complex and costly multiple fused ring acceptors (NFAs). Challenges and future directions are discussed to achieve high performance and low synthetic complexity simultaneously in the development of new NFRAs for practical application in OSCs.

ENERGY MATERIALS (2021)

Article Chemistry, Physical

Electron-deficient diketone unit engineering for non-fused ring acceptors enabling over 13% efficiency in organic solar cells

Dou Luo et al.

Summary: This study demonstrates the use of electron-deficient diketone units in efficient non-fused ring electron acceptors for high-performance organic solar cells. By choosing appropriate building blocks, stronger molecular stacking can be achieved leading to improved device performance.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Multidisciplinary

Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions

Yahui Liu et al.

Summary: The article discusses the application of organic semiconductors in photovoltaic materials, with a focus on the design and synthesis of conjugated polymers and small molecules, as well as the effectiveness of the intramolecular noncovalent interaction design strategy.

CHEMICAL COMMUNICATIONS (2021)

Article Nanoscience & Nanotechnology

Nonfused Nonfullerene Acceptors with an A-D-A′-D-A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells

Shuting Pang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Nanoscience & Nanotechnology

Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells

Chengliang He et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Physical

Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells

Chengliang He et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells

Flurin D. Eisner et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference

Huifeng Yao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Multidisciplinary Sciences

Simple non-fused electron acceptors for efficient and stable organic solar cells

Zhi-Peng Yu et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells

Zhang Zhongqiang et al.

ACTA PHYSICO-CHIMICA SINICA (2019)

Review Chemistry, Physical

Flexible and Semitransparent Organic Solar Cells

Yaowen Li et al.

ADVANCED ENERGY MATERIALS (2018)

Review Chemistry, Multidisciplinary

Organic Photovoltaics over Three Decades

Olle Inganaes

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency

Haijun Bin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Chemistry, Multidisciplinary

A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance

Maojie Zhang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

Manipulating Aggregation and Molecular Orientation in All-Polymer Photovoltaic Cells

Long Ye et al.

ADVANCED MATERIALS (2015)

Review Chemistry, Multidisciplinary

Bulk Heterojunction Solar Cells: Morphology and Performance Relationships

Ye Huang et al.

CHEMICAL REVIEWS (2014)