4.8 Article

Evaluation of in silico predictors on short nucleotide variants in HBA1, HBA2, and HBB associated with haemoglobinopathies

Journal

ELIFE
Volume 11, Issue -, Pages -

Publisher

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.79713

Keywords

variant classification; in silico prediction; haemoglobinopathies; globin genes; thalassaemia; Human

Categories

Funding

  1. Research and Innovation Foundation [Cyprus] [EXCELLENCE/1216/256]

Ask authors/readers for more resources

This study evaluates the performance of 31 in silico predictors in globin gene clusters. The results show that CADD, Eigen-PC, and REVEL are the overall top performers, while SpliceAI is the best splicing predictor, and GERP++ and phyloP are the most accurate conservation tools. The study provides evidence about the optimal use of these computational tools under the ACMG/AMP framework.
Haemoglobinopathies are the commonest monogenic diseases worldwide and are caused by variants in the globin gene clusters. With over 2400 variants detected to date, their interpretation using the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) guidelines is challenging and computational evidence can provide valuable input about their functional annotation. While many in silico predictors have already been developed, their performance varies for different genes and diseases. In this study, we evaluate 31 in silico predictors using a dataset of 1627 variants in HBA1, HBA2, and HBB. By varying the decision threshold for each tool, we analyse their performance (a) as binary classifiers of pathogenicity and (b) by using different non-overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP framework. Our results show that CADD, Eigen-PC, and REVEL are the overall top performers, with the former reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the highest accuracies for missense variants, while CADD is also a reliable predictor of non-missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching strong level of evidence, while GERP++ and phyloP are the most accurate conservation tools. This study provides evidence about the optimal use of computational tools in globin gene clusters under the ACMG/AMP framework.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available