4.6 Review

Micro-Optics 3D Printed via Multi-Photon Laser Lithography

Journal

ADVANCED OPTICAL MATERIALS
Volume 11, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202201701

Keywords

fiber-optics; integrated devices; laser 3D printing; micro-optics; nano-photonics; nanotechnology; two-photon polymerization

Ask authors/readers for more resources

The field of 3D micro-optics is rapidly expanding, with key advances in femtosecond laser direct-write 3D multi-photon lithography. Micro-optics fabricated via this technique have shown impressive potential in beam shaping, advanced imaging, optical sensing, and integrated photonic circuits, attracting increasing industrial interest.
The field of 3D micro-optics is rapidly expanding, and essential advances in femtosecond laser direct-write 3D multi-photon lithography (MPL, also known as two-photon or multi-photon polymerization) are being made. Micro-optics realized via MPL emerged a decade ago and the field has exploded during the last five years. Impressive findings have revealed its potential for beam shaping, advanced imaging, optical sensing, integrated photonic circuits, and much more. This is supported by a game-changing and increasing industrial interest from key established companies in this field. In this review, the origin and the advancement of micro-optics fabrication with MPL are detailed by describing the chronology, distinguishing discrete application groups, providing generalized technical data on the processes and available materials, and discussing the foreseen near-future advances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available