4.4 Article

Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study

Journal

JOURNAL OF POLYMER RESEARCH
Volume 23, Issue 4, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10965-016-0975-8

Keywords

Radiation synthesis; Smart hydrogel; Temperature/pH sensitivity; OPGMA; HEMA; IA

Funding

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [172026, III45005]

Ask authors/readers for more resources

The purpose of this study was to attain oligo(propylene glycol) methacrylate (OPGMA) based hydrogels for different biomedical applications. Since the volume phase transition temperature (VPTT) of poly(oligo(propylene glycol) methacrylate) (POPGMA) homopolymer was below room temperature, it was necessary to tune the thermoresponsiveness and the VPTT to higher temperatures; radical copolymerisation of OPGMA with more hydrophilic and/or pH responsive monomers was used to adjust these values. A series of copolymeric hydrogels with different ratios of OPGMA, 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) was synthesised by gamma radiation. The swelling properties were preliminarily investigated over a wide pH (2.2-9.0) and temperature (4-80 degrees C) ranges. Additional characterization of their structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The presented results revealed temperature/pH dual responsive P(OPGMA/IA) and P(OPGMA/HEMA/IA) copolymers with large diversity in swelling properties, as a result of the addition of OPGMA thermoresponsive units with a lower critical solution temperature (LCST) and IA pH responsive units. It was demonstrated that VPTT can be significantly shifted to higher (e. g. body) temperatures at higher pH values (pH = 4) by increasing the IA content in the hydrogel composition. Due to the possibility of making dual responsive copolymers in the manner explained in this paper, OPGMA based hydrogels show potential for different biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available