4.7 Article

Ultrasensitive Lateral Flow Immunoassay for Fumonisin B1 Detection Using Highly Luminescent Aggregation-Induced Emission Microbeads

Journal

TOXINS
Volume 15, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/toxins15010079

Keywords

aggregation-induced emission; fluorescent microbeads; lateral flow immunoassay; fumonisin B1

Ask authors/readers for more resources

In this study, ultrabright fluorescent microbeads (AIEMBs) were developed by encapsulating a green-emitting fluorophore with aggregation-induced emission (AIE) characteristic in polymer nanoparticles. The AIEMBs were then used as signal reporters in a competitive LFIA for the highly sensitive screening of fumonisin B1 (FB1) in corn samples. The AIE-LFIA demonstrated high sensitivity, excellent selectivity, good accuracy, and high reliability, indicating a promising platform for FB1 screening.
Lateral flow immunoassay (LFIA) based on fluorescent microbeads has attracted much attention for its use in rapid and accurate food safety monitoring. However, conventional fluorescent microbeads are limited by the aggregation-caused quenching effect of the loaded fluorophores, thus resulting in low signal intensity and insufficient sensitivity of fluorescent LFIA. In this study, a green-emitting fluorophore with an aggregation-induced emission (AIE) characteristic was encapsulated in polymer nanoparticles via an emulsification technique to form ultrabright fluorescent microbeads (denoted as AIEMBs). The prepared AIEMBs were then applied in a competitive LFIA (AIE-LFIA) as signal reporters for the rapid and highly sensitive screening of fumonisin B1 (FB1) in real corn samples. High sensitivity with a detection limit of 0.024 ng/mL for FB1 was achieved by the developed AIE-LFIA. Excellent selectivity, good accuracy, and high reliability of the AIE-LFIA were demonstrated, indicating a promising platform for FB1 screening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available