4.7 Article

Aggregation-Induced Red Emission Nanoparticle-Based Lateral Flow Immunoassay for Highly Sensitive Detection of Staphylococcal Enterotoxin A

Journal

TOXINS
Volume 15, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/toxins15020113

Keywords

staphylococcal enterotoxin A; aggregation-induced emission; boronate affinity reaction; lateral flow immunoassay

Ask authors/readers for more resources

In this study, a novel aggregation-induced emission (AIE)-based sandwich lateral flow immunoassay (LFIA) was introduced for the sensitive detection of Staphylococcal enterotoxin A (SEA) using red-emissive AIE nanoparticles (AIENPs) as the fluorescent nanoprobe. The ultrasensitive detection of SEA in pasteurised milk was achieved within 20 min with a limit of detection of 0.04 ng mL(-1). The proposed PBA-AIENP-LFIA platform shows promise as a potent tool for the identification of additional compounds in food samples as well as an ideal test method for on-site detections.
Staphylococcal enterotoxin A (SEA) has presented enormous difficulties in dairy food safety and the sensitive detection of SEA provides opportunities for effective food safety controls and staphylococcal food poisoning tracebacks. Herein, a novel aggregation-induced emission (AIE)-based sandwich lateral flow immunoassay (LFIA) was introduced to detect SEA by using red-emissive AIE nanoparticles (AIENPs) as the fluorescent nanoprobe. The nanoprobe was constructed by directly immobilising antibodies on boronate-tagged AIENPs (PBA-AIENPs) via a boronate affinity reaction, which exhibited a high SEA-specific affinity and remarkable fluorescent performance. Under optimal conditions, the ultrasensitive detection of SEA in pasteurised milk was achieved within 20 min with a limit of detection of 0.04 ng mL(-1). The average recoveries of the PBA-AIENP-LFIA ranged from 91.3% to 117.6% and the coefficient of variation was below 15%. It was also demonstrated that the PBA-AIENP-LFIA had an excellent selectivity against other SE serotypes. Taking advantage of the excellent sensitivity of this approach, real chicken and salad samples were further analysed, with a high versatility and accuracy. The proposed PBA-AIENP-LFIA platform shows promise as a potent tool for the identification of additional compounds in food samples as well as an ideal test method for on-site detections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available