4.7 Article

False Detections Revising Algorithm for Millimeter Wave Radar SLAM in Tunnel

Journal

REMOTE SENSING
Volume 15, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/rs15010277

Keywords

millimeter wave radar; SLAM; radar false detections; HTMR-CSM; STMR-CSM

Ask authors/readers for more resources

Millimeter wave radar SLAM technology is effective for detecting trapped vehicles in tunnel accidents. This paper presents a radar multi-path scattering theory to study the difference between false and true radar detection in closed spaces. Two radar false detection revising methods are proposed and validated through experiments.
Millimeter wave (MMW) radar simultaneous localization and mapping (SLAM) technology is an emerging technology in a tunnel vehicle accident rescue scene. It is a powerful tool for statistic-trapped vehicle detection with limited vision caused by darkness, heat, and smoke. A variety of SLAM frameworks have been proven to be able to obtain 3-degree-of-freedom (3-dof) pose estimation results using 2-dimention (2D) MMW radar in open space. In the application of millimeter wave radar for pose estimation and mapping in a closed environment, closed space structures and artificial targets together constitute high-intensity multi-path scattering measurement data, leading to radar false detections. Radar false detections caused by multi-path scattering are generally considered to be detrimental to radar applications, such as multi-target tracking. However, few studies analyze the mechanism of multi-path effects on radar SLAM, especially in closed spaces. In order to address the problem, this paper first presents a radar multi-path scattering theory to study the generation mechanism difference of false and radar true detection and their influences on radar SLAM 2D pose estimation and mapping in tunnel. According to the scattering mechanism differences on SLAM, a radar azimuth scattering angle signature is proposed, which allows distinguishing radar false detections from real ones. This is useful in avoiding using unreliable radar false detections to solve a radar SLAM problem. In addition, two different radar false detection revising methods combined with the CSM (correlative scan matching) algorithm are proposed in this paper. The HTMR-CSM (hard-threshold-multi-path-revised correlative scan matching) algorithm only depends on a hard threshold of radar azimuth scattering angle signature to eliminate all radar false detections as much as possible before CSM. Another idea is the STMR-CSM (soft-threshold-multi-path-revised correlative scan matching) algorithm. All the radar false detections are classified according to the distribution model of radar azimuth accuracy, and part of more reliable radar false detections are retained to estimate a more accurate pose. All the ideas in this paper are validated by using an MMW 2D radar mounted on a rail-guided robot in a tunnel. Two cars on fire were set as the targets. The experimental results show that the STMR-CSM algorithm that keeps the reliable radar false detections improves the positioning accuracy by 20% compared with CSM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available