4.7 Article

Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations

Journal

REMOTE SENSING
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/rs15030780

Keywords

assimilation; ICESat-2; lake; multi-orbit; water level

Ask authors/readers for more resources

Satellite laser altimetry is widely used for monitoring surface height changes in inland waters. However, the temporal resolution of constructing time series of water levels is limited. This paper focuses on synthesizing multi-orbit observations from ICESat-2 to densify and refine water level time series for large lakes. The approach has been validated and shown to provide an effective solution for densifying water level series and monitoring high-frequency variations in lakes.
Satellite laser altimetry has been widely used for monitoring surface height changes in inland waters. However, constructing time series of water levels is partially limited in temporal resolution only based on the individual orbit of altimeter observations. To densify and optimize the time series of altimetry-based water levels is crucial to the scientific understanding of lake hydrologic dynamics. This paper focuses on synthesizing the multi-orbit on-lake observations from the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) to densify and refine the water level time series for large lakes. The approach of synthesizing water level time series has been validated through experiments applied to 18 large lakes worldwide, resulting in an average R of 0.93, RMSE of 0.14 m, MAE of 0.12 m, NSE of 0.67, and CV of 2.86, according to the hydrologic gauge stations. The evaluation results demonstrate that our approach can provide an effective solution for densifying the water level series of large lakes covered by multi-orbit ICESat-2 observations. Further, the approach can be extended to monitor the high-frequency variation of other lakes covered by the multiple ICESat-2 orbits. This approach provides the potential of generating higher-frequency estimates of water levels based on satellite altimetry, which could not only help to reveal the characteristics of the seasonal dynamics of lakes but also be used to investigate the abrupt water level changes due to hydrological extreme events (e.g., floods, droughts, etc.).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available