4.7 Article

Pyrolysis Process of Mixed Microplastics Using TG-FTIR and TED-GC-MS

Journal

POLYMERS
Volume 15, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/polym15010241

Keywords

microplastics; pyrolysis; quantification analysis; TG-FTIR; TED-GC-MS

Ask authors/readers for more resources

This study used two analytical methods, TG-FTIR and TED-GC-MS, combined with thermogravimetric analysis to evaluate the thermal-degradation process of individual and mixed samples of PP, PET, and PVC. The results showed that the volatilization of polymers may be underestimated during pyrolysis. TG-FTIR and TED-GC-MS showed strong advantages in identifying mixed microplastics through different discrimination mechanisms. This study provides deep insight into pyrolysis behaviors and the interactions of mixed polymers, and the obtained results can help better comprehend the complex pyrolysis process.
Microplastics have become a ubiquitous contaminant in the environment. The present study focuses on the identification, characterization, and quantification techniques for tracking microplastics. Due to their unique compositional structure, unambiguous identification of individual polymers in various plastic samples, usually comprised of mixtures of individual polymers, remains a challenge. Therefore, there is limited research on the pyrolysis characterization of mixed samples. In this study, two analytical methods, TG-FTIR and TED-GC-MS combined with thermogravimetric analysis were used to evaluate the thermal-degradation process of individual and mixed samples of polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The primary interaction was the volatilization of terephthalic acid bound to chlorine molecules. The reduction of vinyl-ester functional groups and aromatic hydrocarbon intermediates related to olefin branching was confirmed. Char formation was increased, due to aromatic compounds from PET and PVC. All of the polymers used in the study may be underestimated in quantity, due to combined volatilizations during pyrolysis. TG-FTIR and TED-GC-MS showed forceful advantages in identifying mixed microplastics through different discrimination mechanisms. The study provides deep insight into pyrolysis behaviors and the interactions of mixed polymers, and the obtained results can help better comprehend the complex pyrolysis process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available