4.5 Article

Effects of biogas and raw slurries on grass growth and soil microbial indices

Journal

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
Volume 179, Issue 2, Pages 215-222

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.201400544

Keywords

digestate; organic fertilizer; soil fertility; soil microorganism; plant nutrition; root amino sugar

Ask authors/readers for more resources

Biogas slurry is increasingly used as fertilizer. Earlier research was focused on plant growth and soil chemical properties, with only little information available regarding the effects of biogas slurry on soil and root microbial indices. For this reason, a 70 d pot experiment was conducted in which biogas and raw slurries obtained from six biodynamic farms were added to a soil. Italian ryegrass (Lolium multiflorum Lam.) was cultivated to investigate the effects on plant yield, N uptake (two harvests), soil microbial biomass, soil fungi, and root-colonizing microorganisms. Biogas slurries increased the mean total above-ground plant biomass by 66% and raw slurries by 35% in comparison to the control. The mean plant N-uptake increased under biogas and raw slurry application by 166% and 65%, respectively, compared with the unfertilized pots. The effects of biogas and raw slurry application on soil microbial indices were similar except for the lower fungal biomass after biogas slurry amendment. In contrast to biogas slurries, the raw slurries significantly increased microbial biomass C and N by roughly 25% in comparison to the control. The application of biogas slurries significantly decreased the soil ergosterol content in comparison with raw slurry and control treatment, leading to a significantly lower ergosterol : microbial biomass C ratio. In the roots, biogas and raw slurry application significantly decreased the concentrations of the amino sugars galactosamine and glucosamine by 39 and 27%, respectively, but not that of ergosterol in comparison with the control. This was most likely due to a reduced colonization with arbuscular mycorrhizal fungi in the presence of highly available plant nutrients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available