4.5 Article

Phenology, photosynthesis, and phosphorus in European beech (Fagus sylvatica L.) in two forest soils with contrasting P contents

Journal

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
Volume 179, Issue 2, Pages 151-158

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.201500539

Keywords

bark; exudates; phosphorus deficiency; seasonality; wood

Funding

  1. Deutsche Forschungsgemeinschaft [Po362/22-1]
  2. People's Republic of China

Ask authors/readers for more resources

Phosphorus (P) is often a limiting macronutrient in temperate forests, but knowledge on the phenological and physiological responses of beech (Fagus sylvatica L.) to P deficiency is scarce. In this study, young beech trees were excavated with intact soil cores from two German forests, Unterluss (LUE) with low soil P and Bad Bruckenau (BBR) with high soil P concentrations. The trees were transferred to identical climatic conditions. In the subsequent growth phase phenological stages during bud burst and leaf unfolding were recorded; biomass production and total P concentrations in different tissues were measured. Seasonal fluctuations in photosynthesis and of soluble P in wood and bark exudates were determined. BBR beeches grew faster and produced more and larger leaves than the LUE beeches. Leaf extension and unfolding were delayed in LUE compared with BBR beeches, but not the time point of bud break. All plant tissues of BBR trees contained higher total P concentrations than those of LUE trees. Strong seasonal fluctuations for P in exudates of beech transport tissues, wood and bark, indicated higher P supply in BBR than in LUE plants, especially at the beginning of the growth phase until leaf maturity. Photosynthetic activity of LUE beeches was lower than that of BBR beeches due to stomatal limitations as the result of anatomically smaller stomatal pore widths, but not as the result of acute biochemical limitation of photosynthesis. Our results suggest that developmental retardation and lower photosynthesis under low P availability may be adaptation mechanisms that adjust the acquisition and recycling of P resources to seasonal growth demand.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available