4.4 Article

Melatonin suppresses serum starvation-induced autophagy of ovarian granulosa cells in premature ovarian insufficiency

Journal

BMC WOMENS HEALTH
Volume 22, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12905-022-02056-7

Keywords

Premature ovarian insufficiency; Granulosa cells; Melatonin; miR-15a-5p; Stat3; PI3K-Akt-mTOR pathway; Autophagy; Serum starvation

Ask authors/readers for more resources

This study revealed that MT inhibits autophagy of granulosa cells in women with premature ovarian insufficiency (POI) by modulating the miR-15a-5p/Stat3/PI3K-Akt-mTOR pathway, shedding light on the potential protective mechanism of MT in POI.
Objectives Premature ovarian insufficiency (POI) refers to the decline and cessation of ovarian functions in women under 40 years of age. Melatonin (MT) acts as a protective for the ovary. This study elucidated the role of MT in autophagy of granulosa cells (GCs) in POI via modulating the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. Methods The expression levels of microRNA (miR)-15a-5p, signal transducer and activator of transcription 3 (Stat3), and relevant hormones in the clinically collected serum samples of POI patients and healthy controls were examined. Human ovarian granulosa-like tumor cells (KGN) underwent serum starvation (SS) treatment to induce POI cell models and then received MT treatment. The expression levels of miR-15a-5p, Stat3, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR in KGN cells were tested via quantitative real-time polymerase chain reaction and Western blotting. KGN cell viability was assessed by MTT assay and the protein levels of autophagy-related markers Beclin-1, microtubule-associated protein light chain 3 II/I, and p62 were detected by Western blotting. The binding relation between miR-15a-5p and Stat3 was verified via the dual-luciferase reporter gene assay. Functional rescue experiments were performed to probe the underlying role of miR-15a-5p/Stat3/the PI3K-Akt-mTOR pathway in KGN cell autophagy. Results miR-15a-5p was increased whilst Stat3 was decreased in the serum of POI patients and SS-induced KGN cells. MT inhibited miR-15a-5p and Stat3, activated the PI3K-Akt-mTOR pathway, and repressed cell autophagy in SS-induced KGN cells. miR-15a-5p targeted and repressed Stat3 expression. Upregulation of miR-15a-5p or downregulation of Stat3 or the PI3K-Akt-mTOR pathway promoted KGN cell autophagy. Conclusion MT suppressed miR-15a-5p and activated Stat3 and the PI3K-Akt-mTOR pathway, finally impeding SS-induced autophagy of GCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available