4.7 Article

Microphysiological Drug-Testing Platform for Identifying Responses to Prodrug Treatment in Primary Leukemia

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 12, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1002/adhm.202202506

Keywords

acute lymphoblastic leukemia; drug response profiling; microphysiological systems; personalized health; prodrugs

Ask authors/readers for more resources

Despite improving survival rates in pediatric leukemia patients, the outcome for certain subtypes remains poor. A microphysiological drug-testing platform has been developed to address the limitations of current screening methods, allowing for the co-culture of patient-derived leukemia cells, bone marrow cells, and liver tissues. By testing the activation of the prodrug ifosfamide in this platform, sample-specific sensitivities to ifosfamide in primary leukemia samples can be identified, providing potential for precision chemotherapy selection.
Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient-derived leukemia samples provide important information to tailor treatments for high-risk patients. However, currently used well-based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug-testing platform is developed that enables co-culturing of patient-derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well-based assays. By testing the susceptibility of primary patient-derived leukemia samples to the prodrug ifosfamide, sample-specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short-lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available