4.3 Review

Potassium fluxes across the endoplasmic reticulum and their role in endoplasmic reticulum calcium homeostasis

Journal

CELL CALCIUM
Volume 58, Issue 1, Pages 79-85

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2014.11.004

Keywords

Endoplasmic reticulum; Intracellular potassium fluxes; Calcium homeostasis

Categories

Funding

  1. Estonian Research Council [IUT2-5]
  2. European Regional Development Fund

Ask authors/readers for more resources

There are a number of known and suspected channels and exchangers in the endoplasmic reticulum that may participate in potassium flux across its membrane. They include trimeric intracellular cation channels permeable for potassium, ATP-sensitive potassium channels, calcium-activated potassium channels and the potassium-hydrogen exchanger. Apart from trimeric intracellular cation channels, which are specific to the endoplasmic reticulum, other potassium channels are also expressed in the plasma membrane and/or mitochondria, and their specific role in the endoplasmic reticulum has not yet been fully established. In addition to these potassium-selective channels, the ryanodine receptor and, potentially, the inositol 1,4,5-trisphosphate receptor are permeable to potassium ions. Also, the role of potassium fluxes across the endoplasmic reticulum membrane has remained elusive. It has been proposed that their main role is to balance the charge movement that occurs during calcium release and uptake from or to the endoplasmic reticulum. This review aims to summarize current knowledge on endoplasmic reticulum potassium channels and fluxes and their potential role in endoplasmic reticulum calcium uptake and release. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available