4.7 Article

Assessing the potential of solubility trapping in unconfined aquifers for subsurface carbon storage

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-24623-6

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)

Ask authors/readers for more resources

To attenuate global warming, it is necessary to accelerate carbon capture and storage projects. This study evaluated the feasibility and limitations of injecting water-dissolved CO2 for subsurface solubility storage. The results suggest that unconfined aquifers could be a potential host for substantial subsurface CO2 storage.
Carbon capture and storage projects need to be greatly accelerated to attenuate the rate and degree of global warming. Due to the large volume of carbon that will need to be stored, it is likely that the bulk of this storage will be in the subsurface via geologic storage. To be effective, subsurface carbon storage needs to limit the potential for CO2 leakage from the reservoir to a minimum. Water-dissolved CO2 injection can aid in this goal. Water-dissolved CO2 tends to be denser than CO2-free water, and its injection leads immediate solubility storage in the subsurface. To assess the feasibility and limits of water-dissolved CO2 injection coupled to subsurface solubility storage, a suite of geochemical modeling calculations based on the TOUGHREACT computer code were performed. The modelled system used in the calculations assumed the injection of 100,000 metric tons of water-dissolved CO2 annually for 100 years into a hydrostatically pressured unreactive porous rock, located at 800 to 2000 m below the surface without the presence of a caprock. This system is representative of an unconfined sedimentary aquifer. Most calculated scenarios suggest that the injection of CO2 charged water leads to the secure storage of injected CO2 so long as the water to CO2 ratio is no less than similar to 24 to 1. The identified exception is when the salinity of the original formation water substantially exceeds the salinity of the CO2-charged injection water. The results of this study indicate that unconfined aquifers, a generally overlooked potential carbon storage host, could provide for the subsurface storage of substantial quantities of CO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available