4.6 Article

Cerebral oxidative metabolism is decreased with extreme apnoea in humans; impact of hypercapnia

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 594, Issue 18, Pages 5317-5328

Publisher

WILEY-BLACKWELL
DOI: 10.1113/JP272404

Keywords

-

Funding

  1. Canadian Research Chair
  2. NSERC
  3. Croatian Science Foundation [IP-2014-09-1937]

Ask authors/readers for more resources

Key points The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3min36s to 7min26s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by approximate to 29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea. AbstractProlonged apnoea in humans is reflected in progressive hypoxaemia and hypercapnia. In the present study, we explore the cerebral metabolic responses under extreme hypoxia and hypercapnia associated with prolonged apnoea. We hypothesized that the cerebral metabolic rate for oxygen (CMRO2) will be reduced near the termination of apnoea, attributed in part to the hypercapnia. Fourteen elite apnoea-divers performed a maximal apnoea (range 3min 36s to 7min 26s) under dry laboratory conditions. In a subset study with the same divers, the impact of hypercapnia on cerebral metabolism was determined using varying levels of hypercapnic breathing, against the background of similar hypoxia. In both studies, the CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-internal jugular venous oxygen content difference. Non-oxidative cerebral metabolism was calculated from the ratio of oxygen and carbohydrate (lactate and glucose) metabolism. The CMRO(2)was reduced by approximate to 29% (P<0.01, Cohen's d=1.18) near the termination of apnoea compared to baseline, although non-oxidative metabolism remained unaltered. In the subset study, in similar backgrounds of hypoxia (arterial O-2 tension: approximate to 38.4mmHg), severe hypercapnia (arterial CO2 tension: approximate to 58.7mmHg), but not mild-hypercapnia (arterial CO2 tension: approximate to 46.3mmHg), depressed the CMRO2 (approximate to 17%, P=0.04, Cohen's d=0.87). Similarly to the apnoea, there was no change in the non-oxidative metabolism. These data indicate that hypercapnia can partly explain the reduction in CMRO2 near the apnoea breakpoint. This hypercapnic-induced oxygen conservation may protect the brain against severe hypoxaemia associated with prolonged apnoea. Key points The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3min36s to 7min26s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by approximate to 29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available