4.6 Article

Development of a high-throughput method for real-time assessment of cellular metabolism in intact long skeletal muscle fibre bundles

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 594, Issue 24, Pages 7197-7213

Publisher

WILEY
DOI: 10.1113/JP272988

Keywords

metabolic flux; method; muscle metabolism; seahorse; skeletal muscle fibre

Funding

  1. School of Biomedical Sciences at the University of Queensland
  2. Motor Neurone Disease Research Institute of Australia (MNDRIA) Bob Delaney MND Research Grant
  3. Australian Government
  4. University of Queensland
  5. Queensland Brain Institute
  6. Royal Brisbane and Women's Hospital Foundation
  7. MND and Me Foundation

Ask authors/readers for more resources

We developed a method that allows for real-time assessment of cellular metabolism in isolated, intact long skeletal muscle fibre bundles from adult mice. This method can be used to study changes in mitochondrial function and fuel utilisation in live skeletal muscle fibre bundles. Our method enables flexibility in experimental design and high-throughput assessment of mitochondrial parameters in isolated skeletal muscle fibre bundles. Extensor digitorum longus (EDL) fibre bundles obtained from chronic high-fat diet fed mice had lower basal oxygen consumption under FCCP-induced maximal respiration, when compared to control chow-fed mice. EDL fibre bundles obtained from chronic high-fat diet fed mice had enhanced mitochondrial oxidation capacity under FCCP-induced maximal respiration, when compared to control chow-fed mice. AbstractMetabolic dysfunction in skeletal muscle contributes to the aetiology and development of muscle diseases and metabolic diseases. As such, assessment of skeletal muscle cellular bioenergetics provides a powerful means to understand the role of skeletal muscle metabolism in disease and to identify possible therapeutic targets. Here, we developed a method that allows for the real-time assessment of cellular respiration in intact skeletal muscle fibre bundles obtained from the extensor digitorum longus (EDL) muscle of adult mice. Using this method, we assessed the contribution of ATP turnover and proton leak to basal mitochondrial oxygen consumption rate (OCR). Our data demonstrate that the mitochondria in EDL fibres are loosely coupled. Moreover, in the presence of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), we show that palmitate exposure induced comparable peak OCR and higher total OCR in EDL fibre bundles when compared to pyruvate exposure, suggesting that fatty acids might be a more sustainable fuel source for skeletal muscle when mitochondria are driven to maximal respiration. Application of this method to EDL fibre bundles obtained from chronic high-fat diet fed mice revealed lower basal OCR and enhanced mitochondrial oxidation capacity in the presence of FCCP when compared to the chow-diet fed control mice. By using a 96-well microplate format, our method provides a flexible and efficient platform to investigate mitochondrial parameters of intact skeletal muscle fibres obtained from adult mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available