4.7 Article

Efficacy of violet-blue light to inactive microbial growth

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-24563-1

Keywords

-

Funding

  1. Ugolini C. SRL.
  2. University of Siena

Ask authors/readers for more resources

This study evaluated the efficacy of violet-blue light at 405 nm (VBL405) in inhibiting microbial growth on surfaces and in the air. The results showed that VBL405 had the strongest inhibitory effect on microbial growth, especially at a distance of 2 meters from the light source. Additionally, the average microbial reduction in the sampled air after exposure to VBL405 was approximately 70%.
The increase in health care-associated infections and antibiotic resistance has led to a growing interest in the search for innovative technologies to solve these problems. In recent years, the interest of the scientific community has focused on violet-blue light at 405 nm (VBL405). This study aimed to assess the VBL405 efficiency in reducing microbial growth on surfaces and air. This descriptive study run between July and October 2020. Petri dishes were contaminated with P. aeruginosa, E. coli, S. aureus, S. typhimurium, K. pneumoniae and were placed at 2 and 3 m from a LED light source having a wavelength peak at 405 nm and an irradiance respectively of 967 and 497 mu W/cm(2). Simultaneously, the air in the room was sampled for 5 days with two air samplers (SAS) before and after the exposition to the VBL405 source. The highest microbial reduction was reached 2 m directly under the light source: S. typhimurium (2.93 log(10)), K. pneumoniae (2.30 log(10)), S. aureus (3.98 log(10)), E. coli (3.83 log(10)), P. aeruginosa (3.86 log(10)). At a distance of 3 m from the light source, the greatest reduction was observed for S. aureus (3.49 log(10)), and P. aeruginosa (3.80 log(10)). An average percent microbial reduction of about 70% was found in the sampled air after 12 h of exposure to VBL405. VBL405 has proven to contrast microbial growth on the plates. Implementing this technology in the environment to provide continuous disinfection and to control microbial presence, even in the presence of people, may be an innovative solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available