4.7 Article

Pseudomonas aeruginosa PAO1 outer membrane vesicles-diphtheria toxoid conjugate as a vaccine candidate in a murine burn model

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-26846-z

Keywords

-

Funding

  1. Shahed University [20402]
  2. Biotechnology Development Council of the Islamic Republic of Iran [biodc-32881-32927.1]

Ask authors/readers for more resources

This study evaluated the immunogenicity and efficacy of a vaccine consisting of Pseudomonas aeruginosa PA-OMVs (PA-OMVs) conjugated with diphtheria toxoid (DT) in a mice model of burn wound infection. The results showed that the conjugated vaccine significantly increased specific antibodies titer and provided greater protective effectiveness against P. aeruginosa infection, as seen by lower bacterial loads, decreased inflammatory cell infiltration, and less tissue damage.
Pseudomonas aeruginosa is an opportunistic pathogen considered a common cause of nosocomial infection with high morbidity and mortality in burn patients. Immunoprophylaxis techniques may lower the mortality rate of patients with burn wounds infected by P. aeruginosa; consequently, this may be an efficient strategy to manage infections caused by this bacterium. Several pathogenic Gram-negative bacteria like P. aeruginosa release outer membrane vesicles (OMVs), and structurally OMV consists of several antigenic components capable of generating a wide range of immune responses. Here, we evaluated the immunogenicity and efficacy of P. aeruginosa PA-OMVs (PA-OMVs) conjugated with the diphtheria toxoid (DT) formulated with alum adjuvant (PA-OMVs-DT + adj) in a mice model of burn wound infection. ELISA results showed that in the group of mice immunized with PA-OMVs-DT + adj conjugated, there was a significant increase in specific antibodies titer compared to non-conjugated PA-OMVs or control groups. In addition, the vaccination of mice with PA-OMVs-DT + adj conjugated generated greater protective effectiveness, as seen by lower bacterial loads, and eightfold decreased inflammatory cell infiltration with less tissue damage in the mice burn model compared to the control group. The opsonophagocytic killing results confirmed that humoral immune response might be critical for PA-OMVs mediated protection. These findings suggest that PA-OMV-DT conjugated might be used as a new vaccine against P. aeruginosa in burn wound infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available