4.6 Article

Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search algorithm

Journal

RSC ADVANCES
Volume 13, Issue 2, Pages 802-807

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra06869a

Keywords

-

Ask authors/readers for more resources

In this study, a support vector machine (SVM) model with RBF kernel function combined with sparrow search algorithm (SSA) optimization was developed to predict the HHV and nitrogen content (No) values of torrefied biomass based on the feedstock properties and torrefaction conditions. The results showed that SSA optimization significantly improved the prediction performance of the SVM model for both HHV and No. The agreement between experimental data and SSA-SVM predicted values demonstrated the high predictive precision of the model. This study provides a reference for the utilization of torrefied biomass in solid fuels and the design of torrefaction facilities.
A support vector machine (SVM) model with RBF kernel function combined with sparrow search algorithm (SSA) optimization was developed to predict the HHV and nitrogen content (No) values of torrefied biomass based on the feedstock properties and torrefaction conditions. Results showed that SSA optimization significantly improved the prediction performance of the SVM model for both HHV and No. A coefficient of determination (R-2) larger than 0.91 was achieved when the SSA-SVM model was implemented, and the values of RMSE were also fairly acceptable. The agreement between experimental data and SSA-SVM predicted values demonstrated the high predictive precision of the model. This study provides a reference for the utilization of torrefied biomass in solid fuels and the design of torrefaction facilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available