4.6 Article

Effect of Air Storage on Stress Corrosion Cracking of ZK60 Alloy Induced by Preliminary Immersion in NaCl-Based Corrosion Solution

Journal

MATERIALS
Volume 15, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/ma15217862

Keywords

air storage; corrosion products; fractography; Mg alloys; pre-exposure; stress corrosion cracking

Funding

  1. Russian Science Foundation [18-19-00592, 21-79-10378]

Ask authors/readers for more resources

This study aimed to clarify the healing mechanism of Mg alloys exposed to corrosion solutions and stored in air, showing that PESCC gradually reduced and was eventually suppressed with increasing time and temperature of air storage. Recovery of elongation and complete elimination of PESCC were achieved after 24 hours of air storage at 150-200 degrees C, indicating the role of corrosion solution and hydrogen in forming specific zones on the fracture surface.
The preliminary exposure of Mg alloys to corrosion solutions can cause their embrittlement. The phenomenon is referred to as pre-exposure stress corrosion cracking (PESCC). It has been reported that relatively long storage in air after pre-exposure to the corrosion solution is capable of eliminating PESCC. This effect was attributed to the egress of diffusible hydrogen that accumulated in the metal during pre-exposure. However, recent findings challenged this viewpoint and suggested that the corrosion solution retained within the side surface layer of corrosion products could be responsible for PESCC. The present study is aimed at the clarification of the role of hydrogen and the corrosion solution sealed within the corrosion products in the healing effect caused by post-exposure storage in air. Using the slow strain rate tensile (SSRT) testing in air and detailed fractographic analysis of the ZK60 specimens subjected to the liquid corrosion followed by storage in air, we found that PESCC was gradually reduced and finally suppressed with the increasing time and temperature of air storage. The complete elimination of PESCC accompanied by recovery of elongation to failure from 20% to 38% was achieved after 24 h of air storage at 150-200 degrees C. It is established that the characteristic PESCC zone on the fracture surface is composed of two regions, of which the first is always covered by the crust of corrosion products, whereas the second one is free of corrosion products and is characterised by quasi-brittle morphology. It is argued that the corrosion solution and hydrogen stored within the corrosion product layer are responsible for the formation of these two zones, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available