4.6 Review

Advanced Photocatalysts for CO2 Conversion by Severe Plastic Deformation (SPD)

Journal

MATERIALS
Volume 16, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/ma16031081

Keywords

functional properties; ultrafine-grained (UFG) materials; nanostructured materials; photocatalytic CO2 conversion; high-pressure torsion (HPT); oxygen vacancies; high-pressure phases; high-entropy ceramics

Ask authors/readers for more resources

Excessive CO2 emission from fossil fuel usage has led to global warming and environmental crises. The photocatalytic conversion of CO2 to CO or useful components is a new strategy to address this issue. The main challenge is finding photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) has been used to develop active catalysts for CO2 conversion. These strategies can enhance photocatalytic efficiency by improving CO2 adsorption, increasing light absorbance, aligning the band structure, and providing active sites for photocatalytic reactions. This article reviews recent progress in using SPD to develop functional ceramics for photocatalytic CO2 conversion.
Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available