4.6 Article

Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels

Journal

MATERIALS
Volume 16, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/ma16030914

Keywords

CFRP; Puck failure criterion; low-velocity impact; pre-existing damage; numerical simulation

Ask authors/readers for more resources

This study investigates the impact of pre-existing damage on the low-velocity impact response of CFRP through experiments and numerical simulations. A material model based on continuum damage mechanics is developed in Abaqus/Explicit. The model is validated through finite element simulations at the single-element level and more complex models are used to simulate different specimens subjected to low-velocity impacts. The presence of pre-existing damage near the impact region results in severe changes in mechanical response, while impacts farther away from the region show similar results as those on pristine specimens.
This paper presents an experimental and numerical investigation on the influence of pre-existing impact damage on the low-velocity impact response of Carbon Fiber Reinforced Polymer (CFRP). A continuum damage mechanics-based material model was developed by defining a user-defined material model in Abaqus/Explicit. The model employed the action plane strength of Puck for the damage initiation criterion together with a strain-based progressive damage model. Initial finite element simulations at the single-element level demonstrated the validity and capability of the damage model. More complex models were used to simulate tensile specimens, coupon specimens, and skin panels subjected to low-velocity impacts, being validated against experimental data at each stage. The effect of non-central impact location showed higher impact peak forces and bigger damage areas for impacts closer to panel boundaries. The presence of pre-existing damage close to the impact region leading to interfering delamination areas produced severe changes in the mechanical response, lowering the impact resistance on the panel for the second impact, while for non-interfering impacts, the results of the second impact were similar to the impact of a pristine specimen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available