4.6 Article

Scheffe's Simplex Optimization of Flexural Strength of Quarry Dust and Sawdust Ash Pervious Concrete for Sustainable Pavement Construction

Journal

MATERIALS
Volume 16, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/ma16020598

Keywords

pervious concrete; flexural strength; microstructural and morphological assessments; abrasion resistance

Ask authors/readers for more resources

This study investigates the flexural properties of green pervious concrete using Scheffe's (5,2) optimization approach for sustainable road pavement construction. The results show that the flexural strength of green pervious concrete is related to the ratio of water, cement, QD, coarse aggregate, and SDA, and can be improved by optimizing the mixture proportion. Furthermore, scanning electron microscopy and energy dispersive X-ray analysis are used to evaluate the morphological and mineralogical behavior of green pervious concrete samples with various additive mixture compositions.
Pervious concrete provides a tailored surface course with high permeability properties which permit the easy flow of water through a larger interconnected porous structure to prevent flooding hazards. This paper reports the modeling of the flexural properties of quarry dust (QD) and sawdust ash (SDA) blended green pervious concrete for sustainable road pavement construction using Scheffe's (5,2) optimization approach. The simplex mixture design method was adapted to formulate the mixture proportion to eliminate the set-backs encountered in empirical or trials and the error design approach, which consume more time and resources to design with experimental runs required to evaluate the response function. For the laboratory evaluation exercise, a maximum flexural strength of 3.703 N/mm(2) was obtained with a mix proportion of 0.435:0.95:0.1:1.55:0.05 for water, cement, QD, coarse aggregate and SDA, respectively. Moreover, the minimal flexural strength response of 2.504 N/mm(2) was obtained with a mix ratio of 0.6:0.75:0.3:4.1:0.25 for water, cement, QD, coarse aggregate and SDA, respectively. The test of the appropriateness of the developed model was statistically verified using the Student' t-test and an analysis of variance (ANOVA), and was confirmed to be acceptable based on computational outcomes at the 95% confidence interval. Furthermore, the scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) were used to evaluate the morphological and mineralogical behavior of green prior concrete samples with various additive mixture compositions. The addition of QD and SDA, on the other hand, aided the creation of porous microstructures in the concrete matrix due to fabric changes in the concrete mixture, potentially aided by the formation of cementitious compounds such as calcium aluminate hydrate and calcium silicate hydrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available