4.6 Article

NUF2 promotes tumorigenesis by interacting with HNRNPA2B1 via PI3K/AKT/mTOR pathway in ovarian cancer

Journal

JOURNAL OF OVARIAN RESEARCH
Volume 16, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13048-023-01101-9

Keywords

NUF2; Ovarian cancer; PI3K; AKT; mTOR signaling pathway

Ask authors/readers for more resources

This study investigated the effect of NUF2 on the tumorigenicity of ovarian cancer (OC) and the activities of proteins that interact with NUF2. The results showed high NUF2 expression in OC tissues and cell lines, which was associated with poor prognosis. Silencing NUF2 suppressed OC cell proliferation and induced apoptosis, and it was found that NUF2 interacted with HNRNPA2B1 and activated the PI3K/AKT/mTOR signaling pathway in OC cells.
BackgroundOvarian cancer (OC) is one of the commonest and deadliest diseases that threaten the health of women worldwide. It is essential to find out its pathogenic mechanisms and therapeutic targets for OC patients. Although NUF2 (Ndc80 kinetochore complex component) has been suggested to play an important role in the development of many cancers, but little is known about its function and the roles of proteins that regulate NUF2 in OC. This study aimed to investigate the effect of NUF2 on the tumorigenicity of OC and the activities of proteins that interact with NUF2.MethodsOncomine database and immunohistochemical (IHC) staining were used to evaluate the expression of NUF2 in OC tissues and normal tissues respectively. Normal ovarian epithelial cell lines (HOSEpiC) and OC cell lines (OVCAR3?HEY?SKOV3) were cultured. Western blot was applied to analyze the expression of NUF2 in these cell lines. Small interfering RNA (siRNA) was used to silence the expression of NUF2 in OC cell lines, SKOV3 and HEY. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), the CCK-8 method, colony formation assay and flow cytometry were conducted to analyze the biological functions of NUF2 in vitro. OC subcutaneous xenograft tumor models were used for in vivo tests. Immunoprecipitation and mass spectrometry (IP/MS) were performed to verify the molecular mechanisms of NUF2 in OC. IP, immunofluorescence, IHC staining, and Gene Expression Profiling Interactive Analysis platform (GEPIA) were used to analyze the relationship between HNRNPA2B1 and NUF2 in OC cells. SiRNA was used to silence the expression of HNRNPA2B1 in SKOV3 cells, reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay and western blot were used to detect the effect of HNRNPA2B1 on NUF2. GEPIA, The Cancer Genome Atlas (TCGA) database, GSEA and western blot were used to detect the potential signaling pathways related to the roles of HNRNPA2B1 and NUF2 in OC cells.ResultsOur results showed high NUF2 expression in OC tissues and OC cell lines, which was associated with shorter overall survival and progression-free survival in patients. NUF2 depletion by siRNA suppressed the proliferation abilities and induced cell apoptosis of OC cells in vitro, and impeded OC growth in vivo. Mechanistically, NUF2 interacted with HNRNPA2B1 and activated the PI3K/AKT/mTOR signaling pathway in OC cells.ConclusionNUF2 could serve as a prognostic biomarker, and regulated the carcinogenesis and progression of OC. Moreover, NUF2 may interact with HNRNPA2B1 by activating the PI3K/AKT/mTOR signaling pathway to promote the development of OC cells. Our present study supported the key role of NUF2 in OC and suggested its potential as a novel therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available