4.7 Article

Eucommia ulmoides male flower as a remarkable edible floral resource exerts lifespan/healthspan-promoting effects on Caenorhabditis elegans

Journal

FOOD & FUNCTION
Volume 14, Issue 1, Pages 457-470

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2fo03006c

Keywords

-

Ask authors/readers for more resources

This study discovered that extracts from edible flowers can prolong the lifespan of C. elegans and improve their health indicators, while enhancing their resistance to oxidative/heat stress. The longevity-extending effect depends on the transcription factor DAF-16 and mitochondrial function. The study also identified the main active compounds in edible flowers.
Natural products, especially phytochemicals, can effectively improve the health of various model organisms and ultimately prolong their lifespan. As an emerging resource of plant-based food, edible flowers have potential anti-aging effects. Here, we showed that twelve out of 30 drug-food homologous flowers' extracts significantly extended the lifespan of C. elegans, and the Eucommia ulmoides male flower was screened out by comparing centrally. The lifespan of C. elegans increased by 18.61% under the treatment of 100 mu g mL(-1) floral extract (EUFE). Interestingly, this effect was attenuated when EUFE was administered late or at higher concentrations. Significantly, EUFE improved health indicators that decline with aging including pharyngeal pumping, mobility, muscle morphology, and lipofuscin accumulation. EUFE also enhanced the resistance of C. elegans to oxidative/heat stress. The longevity-extending effect of EUFE was dependent on transcription factor DAF-16 and mitochondrial function. Moreover, EUFE triggered the nuclear translocation of DAF-16 and promoted downstream LGG-1 and SOD3 protein expression. In body-wall muscles, EUFE stimulated mitochondrial fission and mitophagy to mitigate age-related mitochondrial impairments. The transcriptional checkpoints of daf-16, drp-1, eat-3, lgg-1, and dct-1 further showed that EUFE regulated DAF-16 signaling and mitochondrial homeostasis. Finally, the interpretation of the EUFE components by correlation analysis, UHPLC-QE-MS, and verification experiments showed that aucubin, geniposide, and asperuloside are the main active compounds. We revealed the excellent lifespan/healthspan-promoting efficacy of EUFE and highlighted that edible flowers are worthy of further investigation as anti-aging dietary resources. Meanwhile, related mechanisms enriched the hypothesis that mitochondria might be involved in the healthspan modulation of longevity pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available