4.6 Article

In situ assessment of lens elasticity with noncontact optical coherence elastography

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 13, Issue 12, Pages 6671-6681

Publisher

Optica Publishing Group
DOI: 10.1364/BOE.475306

Keywords

-

Funding

  1. National Natural Science Foundation of China [62275201]
  2. Joint Funds of the National Natural Science Foundation of China [U22A20312]

Ask authors/readers for more resources

Lens biomechanics has great potential for clinical applications in presbyopia and cataracts. A noncontact optical coherence elastography (OCE) method is proposed for quantitative imaging of lens elasticity. The method was validated and demonstrated consistent results with in vitro measurements. The study also investigated the effects of cold storage and microwave heating on lens elasticity.
Lens biomechanics has great potential for application in clinical diagnostics and treatment monitoring of presbyopia and cataracts. However, current approaches to lens elastog-raphy do not meet the desired safety or sensitivity for clinical application. In this regard, we propose a noncontact optical coherence elastography (OCE) method to facilitate quantitative in situ imaging of lens elasticity. Elastic waves induced by air-pulse stimulation on the limbus propagate to the lens and are then imaged using custom-built swept-source optical coherence tomography to obtain the elastic wave velocity and Young's modulus. The proposed OCE method was first validated by comparing the results of in situ and in vitro measurements of porcine lenses. The results demonstrate that the Young's modulus measured in situ was highly consistent with that measured in vitro and had an intraclass correlation coefficient of 0.988. We further investigated the elastic changes induced by cold storage and microwave heating. During 36-hour cold storage, the mean Young's modulus gradually increased (from 5.62 +/- 1.24 kPa to 11.40 +/- 2.68 kPa, P < 0.0001, n = 9) along with the formation of nuclear opacities. 15-second microwave heating caused a greater increase in the mean Young's modulus (from 6.86 +/- 1.21 kPa to 25.96 +/- 8.64 kPa, P < 0.0025, n = 6) without apparent cataract formation. Accordingly, this study reports the first air-pulse OCE measurements of in situ lenses, which quantified the loss of lens elasticity during simulated cataract development with good repeatability and sensitivity, thus enhancing the potential for adoption of lens biomechanics in the clinic.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available