4.8 Article

Remote-Controlled Droplet Chains-Based Electricity Generators

Journal

ADVANCED ENERGY MATERIALS
Volume 13, Issue 10, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202203825

Keywords

energy harvesting; electricity generators; integration; two-drain electrode architecture; remote control

Ask authors/readers for more resources

To achieve carbon neutrality, it is important to design materials and structures that can simultaneously collect and convert energy. However, directly coupling energy collection and conversion modules can lead to problems such as material wearing, spatial constraints, and low conversion efficiency. This study presents a remote-controlled energy harvesting strategy that utilizes diffusive airflow within a confined channel. The device separates the energy collection unit from the conversion units, and uses two drain electrodes to collect and release electrostatically induced charges, resulting in efficient output performance.
Harnessing ambient renewable mechanical energies for achieving carbon-neutrality demands the rational design of materials and architectures which are favorable for both energy collection and conversion simultaneously. However, the direct coupling of energy collection and conversion modules leads to many unwanted problems such as material wearing, the spatial constraint for large-scale integration, and low energy conversion efficiency. Herein, a remote-controlled energy harvesting strategy that cleverly harnesses the unique advantage of diffusive, long-range airflow within a confined capillary channel is developed. The reported device separates the energy collection unit, made of an elastic cavity that directly transforms external mechanical motion to pneumatic motion, from the conversion units, made of encapsulated droplet chains that serve to translate their recurring motion within the capillary channel into electrical output. In contrast to single-drain electrode design for electricity generation from fresh droplets in open spaces, two drain electrodes are designed to collect and release electrostatically induced charges from recurring droplets in the confined channel, respectively, thereby eliminating unwanted charge accumulation on recurring droplets and leading to efficient output performance. The integration of multiple electricity generation units with such a two-drain electrode architecture with a single energy collector improves the design resilience and relaxes the spatial limitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available