4.8 Review

Covalent Organic Framework Based Lithium-Sulfur Batteries: Materials, Interfaces, and Solid-State Electrolytes

Journal

ADVANCED ENERGY MATERIALS
Volume 13, Issue 10, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202203540

Keywords

covalent organic frameworks; host materials; lithium metal anodes; lithium-sulfur batteries; solid-state electrolytes

Ask authors/readers for more resources

In this article, the application of covalent organic frameworks (COFs) in addressing the issues of sulfur hosts, modified separators, artificial solid electrolyte interphase layers, and solid-state electrolytes in lithium-sulfur batteries is summarized. The focus is on the design and chemistry of COFs for upgrading Li-S batteries. The existing difficulties, prospective remedies, and future research directions for COFs in Li-S batteries are also discussed, laying the foundation for the advancement of this fascinating class of materials.
Lithium-sulfur batteries are recognized as one of the most promising next-generation energy-storage technologies owing to their high energy density and low cost. Nevertheless, the shuttle effect of polysulfide intermediates and the formation of lithium dendrites are the principal reasons that restrict the practical adoption of current Li-S batteries. Adjustable frameworks, structural variety, and functional adaptability of covalent organic frameworks (COFs) have the potential to overcome the issues associated with Li-S battery technology. Herein, a summary is presented of emerging COF materials in addressing the challenging problems in terms of sulfur hosts, modified separators, artificial solid electrolyte interphase layers, and solid-state electrolytes. This comprehensive overview focuses on the design and chemistry of COFs used to upgrade Li-S batteries. Furthermore, existing difficulties, prospective remedies, and prospective research directions for COFs for Li-S batteries are discussed, laying the groundwork for future advancements in this class of fascinating materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available