4.8 Article

Modulating WO3 Crystal Orientation to Suppress Hydroxyl Radicals for Sustainable Solar Water Oxidation

Journal

ACS CATALYSIS
Volume 13, Issue 2, Pages 1470-1476

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c05325

Keywords

hydroxyl radicals; PEC; oriented structure; WO3; EPR

Ask authors/readers for more resources

This study reveals that quenching-treated WO3 with preferred (021) facets exhibits highly improved Faradaic efficiency and stability, while untreated WO3 generates abundant (OH)· radicals and suffers from performance degradation.
Tungsten trioxide (WO3) is one of the promising semiconductors suitable for photoelectrochemical water oxidation, but its hydroxyl radical ((OH)-O-center dot)induced intrinsic performance degradation remains unclarified. Here, we demonstrate that quenching-treated WO3 with preferred (021} facets shows a highly improved Faradaic efficiency (from 57 to 95%) and its performance stability is more than 36 h relative to that of nontreated WO3 with less than 1-h stability. Using electron paramagnetic resonance (EPR), we find that the (OH)-O-center dot could be highly suppressed on the treated WO3 photoanode, while abundant (OH)-O-center dot is generated on the nontreated WO3. In situ ultraviolet-visible (UV-Vis) spectroscopy is used to track the presence of surface W-O-O-W intermediates on the treated WO3, suggesting the favorable formation of O-O and thus better oxygen evolution Faradaic efficiency, while the nontreated WO3 favors the formation of (OH)-O-center dot, which accumulates on the WO3 surface, thus changing the photoanode/electrolyte interfacial properties and poisoning the oxygen evolution process. This work provides an intrinsic understanding of the degradation of the WO3 photoanode under acidic and neutral conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available