4.8 Article

Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36117-8

Keywords

-

Ask authors/readers for more resources

By lattice and band engineering, Zhang et al. constructed a unipolar barrier avalanche photodiode with suppressed dark current and reinforced reverse breakdown. Ga2O3-based solar blind avalanche photodetectors exhibit low voltage operation, optical filter-free and monolithic integration of photodetector arrays, and therefore they are promising to be an alternative to the bulky and fragile photomultiplier tubes for weak signal detection in deep-ultraviolet region. These findings provide insights into precise manipulation of band alignment in avalanche photodetectors, and also offer exciting opportunities for further developing high-performance Ga2O3-based electronics and optoelectronics.
The limited breakdown electric field and the high dark current hider the application of solar blind avalanche photodiodes. Here, Zhang et al., by lattice and band engineering, construct a unipolar barrier avalanche photodiode with suppressed dark current and reinforced reverse breakdown. Ga2O3-based solar blind avalanche photodetectors exhibit low voltage operation, optical filter-free and monolithic integration of photodetector arrays, and therefore they are promising to be an alternative to the bulky and fragile photomultiplier tubes for weak signal detection in deep-ultraviolet region. Here, by deliberate lattice and band engineering, we construct an n-Barrier-n unipolar barrier avalanche photodetector consisting of beta-Ga2O3/MgO/Nb:SrTiO3 heterostructure, in which the enlarged conduction band offsets fortify the reverse breakdown and suppress the dark current while the negligible valance band offsets faciliate minority carrier flow across the heterojunction. The developed devices exhibit record-high avalanche gain up to 5.9 x 10(5) and detectivity of 2.33 x 10(16) Jones among the reported wafer-scale grown Ga2O3-based photodetectors, which are even comparable to the commercial photomultiplier tubes. These findings provide insights into precise manipulation of band alignment in avalanche photodetectors, and also offer exciting opportunities for further developing high-performance Ga2O3-based electronics and optoelectronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available