4.6 Article

Enhancement of specific absorption rate by exchange coupling of the core-shell structure of magnetic nanoparticles for magnetic hyperthermia

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 49, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/49/9/095004

Keywords

magnetic naoparticles; magnetic properties; magnetic fluid hyperthermia

Ask authors/readers for more resources

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic thermal induction by NPs. To increase the efficiency of magnetic thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe2O4) has been coupled to a soft material (Ni0.5Zn0.5Fe2O4). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available