4.8 Article

Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-34577-y

Keywords

-

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

This study reveals the crucial role of KMT5B in maintaining genome stability by repressing S-phase transcription through the control of H4K20me1 levels. Loss of KMT5B leads to genome instability and the formation of rhabdomyosarcoma in muscle stem cells.
Suppression of transcription in S-phase is crucial to prevent genome instability. Zhang et al demonstrate that increase of H4K20me1 due to loss of Kmt5b cause genome instability in muscle stem cells, resulting in stem cell senescence but rhabdomyosarcoma formation when p53 is inactivated. Transcription replication collisions (TRCs) constitute a major intrinsic source of genome instability but conclusive evidence for a causal role of TRCs in tumor initiation is missing. We discover that lack of the H4K20-dimethyltransferase KMT5B (also known as SUV4-20H1) in muscle stem cells de-represses S-phase transcription by increasing H4K20me1 levels, which induces TRCs and aberrant R-loops in oncogenic genes. The resulting replication stress and aberrant mitosis activate ATR-RPA32-P53 signaling, promoting cellular senescence, which turns into rapid rhabdomyosarcoma formation when p53 is absent. Inhibition of S-phase transcription ameliorates TRCs and formation of R-loops in Kmt5b-deficient MuSCs, validating the crucial role of H4K20me1-dependent, tightly controlled S-phase transcription for preventing collision errors. Low KMT5B expression is prevalent in human sarcomas and associated with tumor recurrence, suggesting a common function of KMT5B in sarcoma formation. The study uncovers decisive functions of KMT5B for maintaining genome stability by repressing S-phase transcription via control of H4K20me1 levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available