4.8 Article

Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-34289-3

Keywords

-

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

This study reveals the atomic-scale mechanism of nanoparticle formation in non-stoichiometric perovskite oxide, where excess B-site cations are accommodated by anti-phase boundaries and nanoparticles form through a two-step crystallization mechanism.
Exsolution of excess transition metal cations from a non-stoichiometric perovskite oxide has sparked interest as a facile route for the formation of stable nanoparticles on the oxide surface. However, the atomic-scale mechanism of this nanoparticle formation remains largely unknown. The present in situ scanning transmission electron microscopy combined with density functional theory calculation revealed that the anti-phase boundaries (APBs) characterized by the a/2 < 011> type lattice displacement accommodate the excess B-site cation (Ni) through the edge-sharing of BO6 octahedra in a non-stoichiometric ABO(3) perovskite oxide (La0.2Sr0.7Ni0.1Ti0.9O3-delta) and provide the fast diffusion pathways for nanoparticle formation by exsolution. Moreover, the APBs further promote the outward diffusion of the excess Ni toward the surface as the segregation energy of Ni is lower at the APB/surface intersection. The formation of nanoparticles occurs through the two-step crystallization mechanism, i.e., the nucleation of an amorphous phase followed by crystallization, and via reactive wetting on the oxide support, which facilitates the formation of a stable triple junction and coherent interface, leading to the distinct socketing of nanoparticles to the oxide support. The atomic-scale mechanism unveiled in this study can provide insights into the design of highly stable nanostructures. Exsolution of transition metal cations from non-stoichiometric perovskites offer a route for the formation of stable nanoparticles on the surface. Here authors present an anti-phase boundaries-accelerated exsolution and two-step crystallisation of nanoparticles in non-stoichiometric perovskite thin films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available