4.8 Article

Inhibition of histone methyltransferase Smyd3 rescues NMDAR and cognitive deficits in a tauopathy mouse model

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-35749-6

Keywords

-

Ask authors/readers for more resources

The study by Williams et al demonstrates that targeting the aberrant histone modifying enzyme Smyd3 has the potential to rescue NMDAR and cognitive deficits in a mouse model of Alzheimer's disease, highlighting the potential of epigenetic treatment in neurodegenerative diseases.
The study by Williams et al shows targeting the aberrant histone modifying enzyme Smyd3 rescues NMDAR and cognitive deficits in a mouse model of Alzheimer's disease. It highlights the potential of epigenetic treatment in neurodegenerative diseases. Pleiotropic mechanisms have been implicated in Alzheimer's disease (AD), including transcriptional dysregulation, protein misprocessing and synaptic dysfunction, but how they are mechanistically linked to induce cognitive deficits in AD is unclear. Here we find that the histone methyltransferase Smyd3, which catalyzes histone H3 lysine 4 trimethylation (H3K4me3) to activate gene transcription, is significantly elevated in prefrontal cortex (PFC) of AD patients and P301S Tau mice, a model of tauopathies. A short treatment with the Smyd3 inhibitor, BCI-121, rescues cognitive behavioral deficits, and restores synaptic NMDAR function and expression in PFC pyramidal neurons of P301S Tau mice. Fbxo2, which encodes an E3 ubiquitin ligase controlling the degradation of NMDAR subunits, is identified as a downstream target of Smyd3. Smyd3-induced upregulation of Fbxo2 in P301S Tau mice is linked to the increased NR1 ubiquitination. Fbxo2 knockdown in PFC leads to the recovery of NMDAR function and cognitive behaviors in P301S Tau mice. These data suggest an integrated mechanism and potential therapeutic strategy for AD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available