4.7 Article

The Hydrophobin Gene Family Confers a Fitness Trade-off between Spore Dispersal and Host Colonization in Penicillium expansum

Journal

MBIO
Volume 13, Issue 6, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/mbio.02754-22

Keywords

Penicillium expansum; fitness; hydrophobin; tradeoff

Categories

Funding

  1. National Institutes of Health [R01 2R01GM112739-05A1]
  2. Research Grant Award from BARD (United States - Israel Binational Agricultural Research and Development Fund) [IS-5323-20C]
  3. National Institute of Allergy and Infectious Diseases of the National Institutes of Health [T32AI055397]

Ask authors/readers for more resources

Hydrophobins are amphipathic secreted proteins uniquely found in filamentous fungi, playing an important role in mediating fungal interactions with their environments. Hydrophobins facilitate spore dispersal, but their function in fungal biology and virulence remains elusive. This study deleted all putative hydrophobin genes in P. expansum and found that the septuple-deletion mutant showed a fitness advantage in competitive pathogenicity tests on apple. These findings suggest a functional trade-off between dispersal and host colonization in P. expansum hydrophobins.
Hydrophobins are amphipathic secreted proteins uniquely found in filamentous fungi. These proteins self-assemble and constitute the outer most layer of fungal surfaces thus mediating multiple aspects of fungal interactions with their environments. Hydrophobins are small amphipathic surface proteins found exclusively in fungi. In filamentous ascomycetes, one conserved role of a subset of hydrophobins is their requirement for spore dispersal. Other contributions of these proteins to fungal biology are less clear and vary across genera. To determine the functions of hydrophobins in the biology and virulence of this fungus, we created seven single mutants and a septuple-deletion mutant (Delta sep) of the entire putative P. expansum hydrophobin gene family. One spore hydrophobin, HfbA, shared 72.56% sequence identity to the Aspergillus fumigatus spore hydrophobin RodA and was required for efficient spore dispersion in P. expansum. The Delta sep mutant was likewise reduced in spore dispersal, hypothesized to be due to the aberrant shape and clumping of the Delta sep conidia and conidiophores. Additionally, the Delta sep mutant presented several differences in physiological traits, including decreased survival in extreme cold temperatures and increased production of several toxic secondary metabolites. Most striking was the unexpected fitness advantage that the Delta sep strain displayed in competitive passaging with the wild-type strain on host apple where the mutant significantly increased in percentage of the colonizing population. This work uncovers potential ecological trade-offs of hydrophobin presence in filamentous fungi.IMPORTANCE Hydrophobins are amphipathic secreted proteins uniquely found in filamentous fungi. These proteins self-assemble and constitute the outer most layer of fungal surfaces thus mediating multiple aspects of fungal interactions with their environments. Hydrophobins facilitate spore dispersal, yet a full understanding of the function and need for multiple hydrophobins in fungal species remains elusive. To address the role of this protein family in Penicillium expansum, the causative agent of blue mold disease in pome fruit, all seven putative hydrophobin genes were deleted and the mutant assessed for numerous physiological traits and virulence on fruit. Despite showing a decrease in spore dispersal, the septuple-deletion mutant was more fit than the wild type in competitive pathogenicity tests on apple. Our findings suggest this gene family illustrates a functional trade-off between dispersal and host colonization in P. expansum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available