4.6 Article

Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd-Fe-B alloys

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 50, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6463/50/1/015305

Keywords

amorphous ribbons; nanocrystallization; rare-earth-lean permanent magnet

Funding

  1. DOE [BES-DE-FG02-90ER45413]
  2. European Union MSCA grant [691235]
  3. Marie Curie Actions (MSCA) [691235] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

In this work, we present a complete study of the influence of Nb and Cu addition on the crystallization behavior of Nd-lean Nd-Fe-B melt-spun alloys. Alloys with compositions Nd10-x-yFe84B6NbxCuy (x = 1, y = 0 and x = 0.5, y = 0.5) were melt-spun at different wheel speeds (15-40 m s(-1)) to obtain samples in amorphous, highly disordered and nanocrystalline structures. The crystallization process, induced by different heat treatments, was studied by means of differential thermal analysis and x-ray powder thermodiffraction. Magnetic properties of as-made and heat-treated ribbons were measured by magnetometry. The as-made amorphous samples showed a crystallization to the 2: 14: 1 hard magnetic phase at T-1 similar to 350 degrees C. Doping with Nb results in an increase of T1, and addition of Cu lowers T1. This behavior is explained in terms of an inhibition of grain growth by Nb and a nucleation enhancement by Cu additions. During the crystallization process, a secondary phase (identified as a bcc-Fe-rich phase) is formed. The amount of such a phase increases with the annealing temperature. Coercivity increases upon annealing reaching maxima at 700-750 degrees C. This can be explained in terms of competition between the two phases formed: the 2: 14: 1 hard phase and the soft bcc-Fe-rich phase. The highest coercivity of the Nd-lean samples is observed when the microstructure is appropriate and both phases are exchange-coupled.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available