4.5 Article

Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn

Journal

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
Volume 91, Issue -, Pages 136-144

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2015.12.013

Keywords

Mn-Zn ferrite; Nanoparticles; Magnetic properties; Mossbauer spectroscopy; Raman analysis; Ferromagnetic resonance

Funding

  1. Indian Institute of Technology Delhi, New Delhi, India

Ask authors/readers for more resources

A series of Mn-Zn Ferrite nanoparticles ( < 15 nm) with formula MnxZn1-xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 degrees C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to 18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (M-T) and magnetization (M-H) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available