4.7 Article

22.8% full-area bifacial n-PERT solar cells with rear side sputtered poly-Si (n) passivating contact

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 249, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2022.112043

Keywords

-

Ask authors/readers for more resources

This study demonstrates the use of DC-sputtered poly-Si(n) as a viable option for high-efficiency n-type solar cells. The sputtered poly-Si(n) provides high passivation and low contact resistivity, allowing for increased efficiency. The potential for further optimization is indicated through Quokka simulations.
High-temperature compatible passivating contacts based on phosphorus doped polysilicon (poly-Si(n)) on a thin silicon oxide, employed on the rear side of bifacial n-PERT like solar cells provide an efficiency increase while being compatible with current photovoltaic manufacturing processes, including the metallization process. However, a simple and cost-effective method for poly-Si(n) deposition is still elusive. Herein, we demonstrate DC-sputtering as a scalable and single side technique for poly-Si(n) manufacturing. First, it is demonstrated how DC-sputtered poly-Si(n) can provide high passivation (iV(oc) > 730 mV) and low contact resistivity (rho(c) < 20 m omega cm(2)) when metallized by means of screen printing and firing through of Ag paste. Then, M2-sized bifacial n-PERT solar cells featuring the developed DC sputtered poly-Si(n) at the rear side and a homogenous front side B-emitter reaching a certified efficiency of 22.8% are demonstrated. Quokka simulations based on the developed DC sputtered poly-Si(n) indicate a potential up to 24.8% with an upward potential upon optimization of the front side emitter. This work highlights the feasibility of sputtered poly-Si(n) as an enabler for high-efficiency n-type solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available