4.8 Review

Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources

Journal

SMALL
Volume 19, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202206041

Keywords

covalent organic framework-based membranes; covalent organic frameworks; ion resource recovery; membrane technology

Ask authors/readers for more resources

Membrane technology has great potential in liquid waste treatment and resource recovery. However, the non-adjustable pore size of traditional membranes limits their selectivity for target ions. Covalent organic frameworks (COFs) have emerged as a promising candidate for advanced ion separation membranes due to their low density, large surface area, tunable channel structure, and tailored functionality. This review analyzes and summarizes the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes, providing promising approaches for the design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available