4.8 Article

Flexible All-Solid-State Direct Methanol Fuel Cells with High Specific Power Density

Journal

SMALL
Volume 19, Issue 12, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202205835

Keywords

direct methanol fuel cells; flexible all-solid-state devices; flexible packages; solid methanol; TiC-modified carbon cloth

Ask authors/readers for more resources

Creating flexible batteries for wearable and portable electronics is crucial. The traditional DMFC cannot be used in flexible devices due to its mechanical assembly and lack of flexibility. This study presents a flexible all-solid-state DMFC using a flexible membrane electrode assembly with TiC-modified carbon cloth as a supporting layer. Additionally, the solid methanol fuels used in this DMFC have the advantages of being small, light, and having high energy density. The flexible all-solid-state DMFC has a high power density of 14.06 mW cm(-2) and negligible voltage loss after 50 bends at 60 degrees. Its energy density of 777.78 Wh kg(-1) surpasses flexible lithium-ion batteries, making it advantageous for commercializing flexible electronic products.
It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC-modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all-solid-state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all-solid-state DMFC's power density can reach 14.06 mW cm(-2), and after 50 bends at 60 degrees, its voltage loss can be disregarded. The flexible all-solid DMFC has an energy density that is 777.78 Wh Kg(-1) higher than flexible lithium-ion batteries, which is advantageous for the commercialization of flexible electronic products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available