4.8 Review

A Review of Smart Superwetting Surfaces Based on Shape-Memory Micro/Nanostructures

Journal

SMALL
Volume 19, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202206463

Keywords

micro; nanostructures; morphology regulation; reversible wettability; shape-memory polymers; smart superwetting property

Ask authors/readers for more resources

Bioinspired smart superwetting surfaces with special wettability have gained significant attention for their wide range of applications, such as self-cleaning, oil-water separation, anti-icing/corrosion/fogging, drag reduction, cell engineering, and liquid manipulation. This review focuses on shape-memory polymer (SMP) surfaces, which offer unique shape transformation properties and can be used to achieve desired superwettability through surface microstructure regulation. The review provides a comprehensive overview of fabrication methods, smart superwetting phenomena, and various application fields. The challenges and future prospects of smart superwetting SMP surfaces are also discussed.
Bioinspired smart superwetting surfaces with special wettability have aroused great attention from fundamental research to technological applications including self-cleaning, oil-water separation, anti-icing/corrosion/fogging, drag reduction, cell engineering, liquid manipulation, and so on. However, most of the reported smart superwetting surfaces switch their wettability by reversibly changing surface chemistry rather than surface microstructure. Compared with surface chemistry, the regulation of surface microstructure is more difficult and can bring novel functions to the surfaces. As a kind of stimulus-responsive material, shape-memory polymer (SMP) has become an excellent candidate for preparing smart superwetting surfaces owing to its unique shape transformation property. This review systematically summarizes the recent progress of smart superwetting SMP surfaces including fabrication methods, smart superwetting phenomena, and related application fields. The smart superwettabilities, such as superhydrophobicity/superomniphobicity with tunable adhesion, reversible switching between superhydrophobicity and superhydrophilicity, switchable isotropic/anisotropic wetting, slippery surface with tunable wettability, and underwater superaerophobicity/superoleophobicity with tunable adhesion, can be obtained on SMP micro/nanostructures by regulating the surface morphology. Finally, the challenges and future prospects of smart superwetting SMP surfaces are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available