4.7 Article

An ultrasensitive aptasensor of SARS-CoV-2 N protein based on ion current rectification with nanopipettes

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 377, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2022.133075

Keywords

Nanopipette; Aptamer; Ion current rectification; N protein

Ask authors/readers for more resources

Since the outbreak of COVID-19, rapid and effective detection methods have been a focus of research. This study utilized aptamer-functionalized nanopipettes with unique ion current rectification properties to achieve rapid and highly sensitive detection of trace viral protein, reducing the cost of detection. The sensor platform exhibited a wide dynamic working range and a low detection limit, showing great potential as a tool for rapid detection of SARS-CoV-2.
Since the outbreak of COVID-19 in the world, it has spread rapidly all over the world. Rapid and effective detection methods have been a focus of research. The SARS-CoV-2 N protein (NP) detection methods currently in use focus on specific recognition of antibodies, but the reagents are expensive and difficult to be produced. Here, aptamer-functionalized nanopipettes utilize the unique ion current rectification (ICR) of nanopipette to achieve rapid and highly sensitive detection of trace NP, and can significantly reduce the cost of NP detection. In the presence of NP, the surface charge at the tip of the nanopipette changes, which affects ion transport and changes the degree of rectification. Quantitative detection of NP is achieved through quantitative analysis. Relying on the high sensitivity of nanopipettes to charge fluctuations, this sensor platform achieves excellent sensing performance. The sensor platform exhibited a dynamic working range from 102-106 pg/mL with a detection limit of 73.204 pg/mL, which showed great potential as a tool for rapidly detecting SARS-CoV-2. As parallel and serial testing are widely used in the clinic to avoid missed diagnosis or misdiagnosis, we hope this platform can play a role in controlling the spread and prevention of COVID-19.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available