4.8 Article

Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 7, Issue 12, Pages 2210-2215

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.6b00729

Keywords

-

Funding

  1. Swiss National Science Foundation [ID 200021159896]
  2. Cluster of Excellence RESOLV - DFG [EXC 1069]
  3. CSCS [s466, s553]

Ask authors/readers for more resources

One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available