4.8 Article

Mechanistic Insights into the Challenges of Cycling a Nonaqueous Na-O2 Battery

Journal

Journal of Physical Chemistry Letters
Volume 7, Issue 23, Pages 4841-4846

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.6b02267

Keywords

-

Funding

  1. European Unions's Horizon research and innovation programme [696656 - GrapheneCorel]
  2. EPSRC
  3. Innovate UK
  4. EPSRC [EP/K002252/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/K002252/1] Funding Source: researchfish

Ask authors/readers for more resources

Superoxide-based nonaqueous metal-oxygen batteries have received considerable research attention as they exhibit high energy densities and round-trip efficiencies. The cycling performance, however, is still poor. Here we study the cycling characteristic of a Na-O-2 battery using solid-state nuclear magnetic resonance, Raman spectroscopy, and scanning electron microscopy. We find that the poor cycling performance is primarily caused by the considerable side reactions stemming from the chemical aggressiveness of NaO2 as both a solid-phase and dissolved species in the electrolyte. The side reaction products cover electrode surfaces and hinder electron transfer across the electrode electrolyte interface, being a major reason for cell failure. In addition, the available electrode surface and porosity change considerably during cell discharging and charging, affecting the diffusion of soluble species (superoxide and water) and resulting in inhomogeneous reactions across the electrode. This study provides insights into the challenges associated with achieving long-lived superoxide-based metal-O-2 batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available