4.6 Article

Enhancement of Mammographic Images Using Histogram-Based Techniques for Their Classification Using CNN

Journal

SENSORS
Volume 23, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/s23010235

Keywords

malignant calcifications; cancer classification; HIW; CLAHE; mammography histogram; CAD system

Ask authors/readers for more resources

Breast cancer is a common and life-threatening disease that can spread in the body. Early detection is crucial for successful treatment. By improving the contrast in mammograms, the accuracy of diagnosis can be enhanced.
In the world, one in eight women will develop breast cancer. Men can also develop it, but less frequently. This condition starts with uncontrolled cell division brought on by a change in the genes that regulate cell division and growth, which leads to the development of a nodule or tumour. These tumours can be either benign, which poses no health risk, or malignant, also known as cancerous, which puts patients' lives in jeopardy and has the potential to spread. The most common way to diagnose this problem is via mammograms. This kind of examination enables the detection of abnormalities in breast tissue, such as masses and microcalcifications, which are thought to be indicators of the presence of disease. This study aims to determine how histogram-based image enhancement methods affect the classification of mammograms into five groups: benign calcifications, benign masses, malignant calcifications, malignant masses, and healthy tissue, as determined by a CAD system of automatic mammography classification using convolutional neural networks. Both Contrast-limited Adaptive Histogram Equalization (CAHE) and Histogram Intensity Windowing (HIW) will be used (CLAHE). By improving the contrast between the image's background, fibrous tissue, dense tissue, and sick tissue, which includes microcalcifications and masses, the mammography histogram is modified using these procedures. In order to help neural networks, learn, the contrast has been increased to make it easier to distinguish between various types of tissue. The proportion of correctly classified images could rise with this technique. Using Deep Convolutional Neural Networks, a model was developed that allows classifying different types of lesions. The model achieved an accuracy of 62%, based on mini-MIAS data. The final goal of the project is the creation of an update algorithm that will be incorporated into the CAD system and will enhance the automatic identification and categorization of microcalcifications and masses. As a result, it would be possible to increase the possibility of early disease identification, which is important because early discovery increases the likelihood of a cure to almost 100%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available