4.6 Article

Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques

Journal

SENSORS
Volume 22, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/s22239486

Keywords

artificial intelligence; head-mounted displays; heart rate; neural network; regions of interest; machine learning; virtual reality

Ask authors/readers for more resources

This study remotely estimates heart rate from facial regions captured by a head-mounted display using state-of-the-art techniques, resulting in significant improvements. Additionally, a simulation mechanism was developed to generate a suitable dataset for the technique.
Head-mounted displays are virtual reality devices that may be equipped with sensors and cameras to measure a patient's heart rate through facial regions. Heart rate is an essential body signal that can be used to remotely monitor users in a variety of situations. There is currently no study that predicts heart rate using only highlighted facial regions; thus, an adaptation is required for beats per minute predictions. Likewise, there are no datasets containing only the eye and lower face regions, necessitating the development of a simulation mechanism. This work aims to remotely estimate heart rate from facial regions that can be captured by the cameras of a head-mounted display using state-of-the-art EVM-CNN and Meta-rPPG techniques. We developed a region of interest extractor to simulate a dataset from a head-mounted display device using stabilizer and video magnification techniques. Then, we combined support vector machine and FaceMash to determine the regions of interest and adapted photoplethysmography and beats per minute signal predictions to work with the other techniques. We observed an improvement of 188.88% for the EVM and 55.93% for the Meta-rPPG. In addition, both models were able to predict heart rate using only facial regions as input. Moreover, the adapted technique Meta-rPPG outperformed the original work, whereas the EVM adaptation produced comparable results for the photoplethysmography signal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available