4.8 Article

Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 8, Issue 1, Pages 153-160

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.6b02659

Keywords

-

Funding

  1. National Natural Science Foundation of China [51306159]
  2. Zhejiang Provincial Natural Science Foundation of China [LR17E060002]
  3. China Scholarship Council (CSC)
  4. RWTH Aachen University [jara0146]

Ask authors/readers for more resources

Multilayer graphenes have been widely used as active materials for electric double-layer capacitors (EDLCs), where their numerous edges are demonstrated to play a crucial role in charge storage. In this work, the interfacial structure and capacitive behaviors of multilayer graphene edges with representative interlayer spacing are studied via molecular dynamics (MD) simulations. Compared with planar graphite surfaces, edges can achieve a 2-fold increase in the specific capacitance at a wider interlayer spacing of similar to 5.0 angstrom. Unusually, the molecular origins for achieved charge storage are predominantly attributed to the structural evolutions of solvents occurring in the double layer, going beyond the traditional views of regulating the capacitance by ion adsorption/separation. Specifically, diverse ionic distributions exhibit similar screening ability and EDLC thickness, while water molecules can counterbalance the interfacial electric fields more effectively at edge site. The as-obtained findings will be instructive in designing graphenebased EDLCs for advanced capacitive performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available