4.7 Article

Real-world emission characteristics of semivolatile/intermediate-volatility organic compounds originating fromnonroad constructionmachinery in the working process

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 858, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.159970

Keywords

S/IVOCs; Secondary organic aerosols; Construction machinery; Emission factor

Ask authors/readers for more resources

This study provides detailed emission characterization of S/IVOCs from nonroad construction machines (NRCMs) in China, showing that different machine types, operation modes, and emission standards affect the emission levels and composition of S/IVOCs. These findings provide experimental data support for the refinement of emission characteristics and inventories of S/IVOCs from NRCMs.
Detailed emission characterization of semivolatile/intermediate-volatility organic compounds (S/IVOCs) originating from nonroad construction machines (NRCMs) remains lacking in China. Twenty-one NRCMs were evaluated with a portable emission measurement system in the working process. Gas phase S/IVOCs were collected by Tenax TA tubes and analyzed via thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Particle phase S/IVOCs were collected by quartz filters and analyzed via GC-MS. The average emission factors (EFs) for fuel-based total (gas + particle phase) IVOCs and SVOCs of the assessed NRCMs were 221.45 +/- 194.60 and 11.68 +/- 10.67 mg/kg fuel, respectively. Compared to excavators, the average IVOC and SVOC EFs of loaders were 1.32 and 1.55 times higher, respectively. Compared to the working mode, the average IVOC EFs under the moving mode (only moving forward or backward) were 1.28 times higher. The IVOC and SVOC EFs for excavators decreased by 69.06% and 38.37%, respectively, from China II to China III. These results demonstrate the effectiveness of emission control regulations. In regard to individual NRCMs, excavators and loaders were affected differently by emission standards. The volatility distribution demonstrated that IVOCs and SVOCs were dominated by gas- and particle-phase compounds, respectively. The mode of operation also affected S/IVOC gas-particle partitioning. Combined with previous studies, the mechanical type significantly affected the volatility distribution of IVOCs. IVOCs from higher volatile fuels are more distributed in the high-volatility interval. The total secondary organic aerosol (SOA) production potential was 104.36 +/- 79.67 mg/kg fuel, which originated from VOCs (19.98%), IVOCs (73.87%), and SVOCs (6.15%). IVOCs were a larger SOA precursor than VOCs and SVOCs. In addition, normal (n-) alkanes were suitably correlated with IVOCs, which may represent a backup solution to quantify IVOC EFs. This work provides experimental data support for the refinement of the emission characteristics and emission inventories of S/IVOCs originating from NRCMs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available