4.8 Article

Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 7, Issue 5, Pages 806-810

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.5b02798

Keywords

-

Funding

  1. 973 Project of China [2014CB845904]
  2. NSF of China [11472253]

Ask authors/readers for more resources

It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available